If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x^2-7260=0
a = 60; b = 0; c = -7260;
Δ = b2-4ac
Δ = 02-4·60·(-7260)
Δ = 1742400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1742400}=1320$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1320}{2*60}=\frac{-1320}{120} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1320}{2*60}=\frac{1320}{120} =11 $
| 2+5x=2(−x+6)−24 | | 23-7v=6(5v+4) | | (3x=21) | | 12+x=0.4(30+x) | | -3x^2=-9x | | 12+0.3x=0.4(30+x) | | 4(5y-2=40 | | 5-3(1+6x)=-35 | | 5x-3=12x | | -2=-1/3x+4 | | 6-(x-4)=7(x+10) | | 11x-5=1/4(16x+8) | | 8x^2-8=-34x | | 3x+5x+4=12 | | 2/3+1t/5=2 | | 4b-3=6 | | -2(x+1)=2(x-5) | | 3(x^2+7)=0 | | 2/3+1/5t=2 | | 2(h-6)=-3(4h-10) | | 1,7-0,6=0,3-0,4a | | 3(3x+3)=3(2x+2) | | −0.75p−3=0.25p | | 9,6-(2,6+x)=4 | | x/3=x/6+2/3 | | 4(3-x)=7(2x-5) | | 6-x/8=10 | | 1-5p-2p^2=0 | | 0,4(6y-7)=0,5(3y+7) | | 4(6z-1)-2(z+4)=19(z+1) | | 180=(2×+32)+(6x+8) | | 5x^2-3x+34=0 |